Bayesian Econometrics ; Demand ; Econometrics ; Matrix Algebra ; Maximum Likelihood Regression ; Regression
نویسندگان
چکیده
yt and Pt replaced by any variables that affect supply but not demand. In the 1970s econometricians began to recognize that how the supply or demand equation is normalized affects the estimator of the supply or demand elasticity (¡M or ¬R ) when the two-stage least squares (2SLS) approach is employed. The quality of this estimator is sensitive to the strength of instruments used in the 2SLS estimation, which in turn depends on whether the price variable or the quantity variable is normalized to be on the left-hand side of the supply or demand equation, as in (3) or (4). There are other methods that one can use to estimate the supply and demand equations. One dominating alternative is the full-information maximum likelihood (ML) approach. This approach used to be computationally infeasible for many practical problems. As computing technology improves over time, the ML approach has become more feasible to implement. One advantage of the ML approach over the 2SLS approach is that the economic meaning of the ML estimates will not be affected by normalization. Not until the 1990s, however, did it become known that normalization matters to small-sample statistical inference about the ML estimates. Likelihood-based small-sample inferences are affected because normalization governs the likelihood shape around the ML estimates. A poor normalization can lead to multimodal distribution, disjoint confidence intervals, and very misleading characterizations of the true statistical uncertainty. Related to this discovery, in the Bayesian econometric literature there have been theoretical results showing that normalization can lead to ill-behaved posterior distributions when a flat or symmetric prior is used. The empirical and policy significance of these results has been largely unexplored until very recently. Daniel Waggoner and Tao Zha (2003) and James Hamilton, Waggoner, and Zha (2007) show that normalization can alter economic interpretations of dynamic responses of the variables Mt and Rt to a supply or demand shock S t or D t in the above example. They use this and other examples to demonstrate that inadequate normalization may confound statistical and economic interpretations. There are a variety of economic applications in which normalization plays an important role in likelihood-based statistical inferences. Unfortunately, there is no mechanical way to implement the best normalization across different models. As a practical guide, therefore, it is essential to report the small-sample distributions of parameters of interest rather than the mean and standard deviation only. Bimodal and wide-spread distributions are the first clue that the chosen normalization may be inadequate. Carefully chosen normalization should follow the principle of preserving the likelihood shape around the ML estimate. A successful implementation of this principle for normalization is likely to maintain coherent economic interpretations when statistical uncertainty is summarized.
منابع مشابه
Bayesian and Iterative Maximum Likelihood Estimation of the Coefficients in Logistic Regression Analysis with Linked Data
This paper considers logistic regression analysis with linked data. It is shown that, in logistic regression analysis with linked data, a finite mixture of Bernoulli distributions can be used for modeling the response variables. We proposed an iterative maximum likelihood estimator for the regression coefficients that takes the matching probabilities into account. Next, the Bayesian counterpart...
متن کاملFrontiers in Time Series and Financial Econometrics: An Overview
Two of the fastest growing frontiers in econometrics and quantitative finance are time series and financial econometrics. Significant theoretical contributions to financial econometrics have been made by experts in statistics, econometrics, mathematics, and time series analysis. The purpose of this special issue of the journal on “Frontiers in Time Series and Financial Econometrics” is to highl...
متن کاملMultill10dality of the likelihood in the bivariate seemingly unrelated regression model
Seemingly unrelated regression (SUR) models traditionally appear in econometrics but recently also emerged in likelihood factorizations of Gaussian graphical models. The literature on maximum likelihood estimation in SUR seems not to mention the possibility of a multimodallikelihood. \eVe want to increase the awareness of this phenomenon by a thorough study of a two-equation model illustrated b...
متن کاملBayesian measurement of productivity and efficiency in the presence of undesirable outputs: crediting electric utilities for reducing air pollution
Many studies have measured productivity change and efficiency when an undesirable output is a by-product. We flexibly treat the bad as a technology shifter of an input distance function and model a system of nonlinear equations subject to endogeneity. Theory dictates that we impose monotonicity on all inputs, outputs, and the bad. Since a Bayesian full-information likelihood approach can easily...
متن کاملComparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome
Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data. Methods: This study use...
متن کامل